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BACKGROUND: Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer
(BC) risk. Identifying chemicals with these activities can prompt steps to protect human health.

OBJECTIVES:We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary car-
cinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk.
METHODS: Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental
Protection’s (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate
the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overre-
presentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mam-
mary tumors.

RESULTS:We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched
for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mam-
mary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone.
Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend.
DISCUSSION: We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities
are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast,
and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including
improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/
EHP13233

Introduction
Breast cancer (BC) recently surpassed lung cancer to become
both the most commonly diagnosed cancer type and leading
cause of cancer death among women worldwide.1 In the United
States, it is the most commonly diagnosed invasive cancer2,3 and
the second leading cause of cancer death among women,3 and the
average lifetime risk for a woman to develop BC is 12.8% (more
than double that of lung cancer, the second most common).2,3
Moreover, BC especially affects younger women: Death rates
from BC for women 20–49 years of age are more than double
those for any other type of cancer among men or women,4 and
from 2010 to 2019, the rate of BC diagnoses among women <40
years of age rose 1.1% per year.2 Identifying exposures that raise
the risk of BC through established mechanisms, such as genotox-
icity5 and endocrine disruption,6,7 can inform prevention and
reduce the burden of disease.

Induction of mammary tumors in rodents is one useful proxy
for identifying chemicals that increase BC risk in humans given
that many of the target tissue structures (e.g., terminal ductal units)
and pathways that lead to mammary tumors (hormonal activity,
genotoxicity) are conserved between species.8 Therefore, in 2007,
we used databases from the International Agency for Research on

Cancer (IARC), US National Toxicology Program (NTP), and
others to identify 216 agents as potential breast carcinogens
because they induce mammary tumors in vivo (i.e., they are
mammary carcinogens; MCs).9 This MC list has helped to pri-
oritize chemicals for additional research,10–17 identify data gaps
and pitfalls in evaluating possible MCs,18–24 inform studies of
environmental exposures,14,25–32 and target chemicals for expo-
sure reduction.25,33

Since then, efforts to modernize chemical hazard identification
have suggested a broader approach that incorporates mechanistic in-
formation about chemical bioactivity into carcinogen classifications,
providing context for and reducing dependence on in vivo bioas-
says.20,34–37 In recent years, IARC working groups developed a list
of key characteristics (KCs) of carcinogens to identify common bio-
logical effects of known human carcinogens, providing a framework
to identify other potential carcinogens based on having similar bio-
logical activities.36,38,39 The KCs-of-carcinogens approach parallels
that of the Hallmarks of Cancer,40,41 except that whereas Hallmarks
describe features of cancer cells and tissue, KCs describe effects of
carcinogenic exposures,42 such as genotoxicity, altered cellular sig-
naling, increased cell proliferation, immunosuppression, inflamma-
tion, and epigenetic modifications.35,36 Rarely does any single
carcinogen exhibit all 10 KCs, but, in general, carcinogens act by
one or more KC.38 By focusing on mechanistic features, the KCs
approach supports systematic and efficient identification of potential
carcinogens that can then be assessed with more targeted studies.

Most established carcinogens act through mutagenic mecha-
nisms,39 represented by the two KCs of genotoxicity and altera-
tion of DNA repair/genomic instability.36 However, the other
KCs point to additional pathways by which chemicals can pro-
mote tumors.36,42 The close relationship between BC and hor-
mone signaling5,9,43–45 indicates that “receptor-mediated effects”
is an especially relevant KC for BC. Indeed, BC is so closely tied to
endocrine signaling that tumors are classified according to hormone
receptor activity, particularly the estrogen receptor (ER) and the
progesterone receptor (PR), and treatments to reduce BC risk and
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recurrence block estrogen action.46,47 Activation of the ER or PR
increases cellular proliferation (a KC unto itself), and this is a criti-
cal mechanism by which endocrine-disrupting compounds (EDCs)
promote mammary tumors.48–51 As such, chemicals that increase
estrogen or progesterone biosynthesis or activate estrogen or pro-
gesterone receptors are anticipated to promote mammary tumor
development.52

In the present study, we aimed to identify and characterize
BC-relevant exposures by updating the 2007 list of MCs, compil-
ing information on their genotoxicity and endocrine activity, and
extending the list to include chemicals that activate BC-relevant
endocrine signaling pathways. We also calculated the enrichment
of MCs for those biological effects (i.e., the proportion of MCs
that exert these effects compared with all chemicals screened)
and tested how well existing data on genotoxicity and two types
of endocrine activity could predict whether a chemical is likely to
induce mammary tumors in rodents. By investigating the over-
laps between KCs and known MCs, we can better understand
how KC data could predict BC hazards. Our objective was to
integrate carcinogenicity and mechanistic bioactivity data to con-
struct a more complete list of BC-relevant compounds and, in so
doing, advance BC prevention by informing the design of BC
studies and improving chemical testing and hazard identification.
This list can also serve as a case study for applying the KCs
framework to integrate in vivo and mechanistic data to identify
chemicals that are likely to increase risk of an adverse outcome
(in this case, BC).

Methods
To develop a list of BC-relevant chemicals, we integrated the types
of evidence summarized in Figure 1. We gathered chemical identi-
fiers from the US Environmental Protection Agency (EPA) 2021r1
database of DSSTox Identifiers Mapped to CAS Numbers and
Names.53 We compiled lists and calculated statistics in R (version
4.1.0; R Development Core Team). Code and input files are

available on Github at https://github.com/SilentSpringInstitute/Kay-
et-al-EHP-2024.

Chemicals That Induce Mammary Tumors in Rodents
We consulted the following authoritative sources to identify
exposures that induced rodent mammary tumors (i.e., MCs):
IARC Monographs (volumes 1–131),54 NTP Technical Reports
(nos. 1–602),55 NTP 15th Report on Carcinogens (15th RoC),56

US EPA Integrated Risk Information System (IRIS),57 US EPA
Office of Pesticide Programs (OPP),58,59 US EPA Toxicity
Reference Database (ToxRefDB, version 2.0),60,61 US EPA
Toxicity Values Database (ToxValDB, version 9),62 Lhasa
Carcinogenicity Database63 (LCDB, a continuation of the now-
retired Carcinogenic Potency Database64), and the now-retired
National Cancer Institute’s (NCI) Chemical Carcinogenesis
Research Information System (CCRIS).65 We used our original
list of rodent MCs from Rudel et al.9 as a guide for identifying
potential MCs and then classified them asMCs if they met the cri-
teria described below.

We searched IARC Monographs54 for the term “mammary”
and included chemicals that significantly increased mammary
tumors in at least one study by pairwise comparison at any dose.
We used the NTP Chemical Effects in Biological Systems Organ
Sites with Neoplasia55 search tool for NTP technical reports and
included chemicals where the NTP concluded that there was “pos-
itive,” “clear,” or “some” evidence for induction of mammary
tumors. We searched the 15th RoC pdf files for the term “mam-
mary,” reviewed summary conclusions, and listed chemicals with
studies showing significant induction of mammary tumors.56 We
searched “mammary” in the US EPA IRIS website (https://iris.
epa.gov/AdvancedSearch/) and included chemicals with mammary
tumors listed as a critical effect. We searched the US EPA’s
ToxRefDB60,61 and ToxValDB62 and included chemicals with
rodent cancer bioassays showing treatment-related increases in
mammary tumors at any dose. We searched summary data in the
LCDB,63 which comprises all previously documented entries of the

Figure 1. Information used to classify breast cancer-relevant chemicals. Note: 15th RoC, 15th Report on Carcinogens; CCRIS, Chemical Carcinogenesis
Research Information System; E2, estradiol; EPA, Environmental Protection Agency; EURL ECVAM, European Union Reference Laboratory for Alternatives
to Animal Testing; GENE-TOX, Genetic Toxicology Data Bank; IRIS, Integrated Risk Information System; LCDB, Lhasa Carcinogenicity Database; NLM,
National Library of Medicine; OECD, Organisation for Economic Co-operation and Development; OPP, Office of Pesticide Programs; P4, progesterone;
ToxRefDB, Toxicity Reference Database; ToxValDB, Toxicity Values Database.
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now-discontinued Carcinogenic Potency Database, as well as sub-
sequent cancer assays,66 for chemicals with “positive” evidence for
tumors in the mammary gland, mammary tissue, and mammary
ducts. We downloaded the archived NCI CCRIS database65 and
included chemicals with “positive” evidence for mammary tumors.
We also included pesticides identified as having induced mammary
tumors based on the US EPA OPP Registration Eligibility
Decision (RED) and risk assessment documents as described in
Cardona and Rudel 2020.58

We have previously described pitfalls and inconsistencies in
cancer studies that can lead to unwarranted dismissal of mam-
mary tumors.9,58 Although we did not have the resources to
review every cancer bioassay to determine whether mammary
tumors were inappropriately dismissed, we reviewed studies for
chemicals that we had previously flagged,9,58 as well as chemi-
cals for which mammary tumor induction was indicated as
“equivocal” in NTP technical report conclusions or the 15th RoC.
For NTP technical reports, the 15th RoC, and US EPA pesticide
evaluations, we reviewed the underlying data and rationale and,
if the chemicals were not already included as MCs based on list-
ing by another source, we judged whether to classify them as
MCs based on statistical significance, mechanistic evidence, and
known pitfalls in evaluation of mammary tumors. We explain our
rationale for these decisions in the “Discussion” section; in the
Supplemental Material in “Supplemental discussion on dismissed
or equivocal rodent mammary carcinogens”; and in Excel Table
S2, and we noted the conclusion of the original source(s) in the
MammaryTumorRefs column of Excel Tables S1 and S3–S5.
CCRIS and LCDB do not explain their rationale for “equivocal”
conclusions, so we noted their hit calls in Excel Tables S1–S5
but did not discuss them.

Some chemicals were listed as salts or parent compounds of
salts, and it was not always clear which form was tested in the bio-
assay as summarized by the citing source. Thus, some entries may
appear to be duplicates [e.g., 4-biphenylamine (listed by IARC,54
15th RoC,56 CCRIS65) and its hydrochloride (listed by LCDB63)].
We listed chemicals exactly as they were listed in the source data-
bases, and if the specific chemical tested was unclear, we listed the
parent compound.

Putative Non-MCs
To evaluate whether chemicals with BC-relevant KCs are likely to
be MCs, we developed a list of putative non-MCs—chemicals
tested in a rodent cancer bioassay and not reported to induce mam-
mary tumors. We identified chemicals tested in a cancer bioassay
from three databases: NTP carcinogenicity technical reports from
the NTP Integrated Chemical Environment (ICE),67 and chemicals
with rodent carcinogenicity studies recorded in US EPA’s
ToxRefDB60,61 and ToxValDB.62 Notably, ToxRefDB is the only
resource that specifies tissues assessed in the bioassays, even if
tumors were not observed (i.e., it lists negative results), so we could
be certain that these bioassays included mammary assessment. ICE
and ToxValDB do not specify which tissues were assessed, but the
US EPA, NTP, and the Organisation for Economic Co-operation
and Development (OECD) bioassay protocols require assessment of
the mammary gland from at least the control and high-dose
groups,68–70 so we assumed that the mammary gland was assessed
but could not confirm. In total, ICE, ToxRefDB, and ToxValDB
listed bioassays for 977 chemicals, 127 of which we had listed as
MCs. We classified the remaining 850 chemicals as putative non-
MCs (Excel Table S5). IARC, 15th RoC, US EPA IRIS, CCRIS,
and LCDB were not useful to identify putative non-MCs because
they do not systematically report bioassay results or verify that
mammary tissue was assessed, and they include experimental stud-
ies that typically do not look at all tissues.

Chemicals That Increase Estradiol and Progesterone
Steroidogenesis
To identify chemicals that stimulate synthesis of 17-b-estradiol
(E2) and (P4), we relied on published data from the high
throughput (HT) H295R assay.52,71,72 In this assay, cultured
human adrenocortical carcinoma (H295R) cells were stimulated
with forskolin for 48 h and then exposed to the test chemical for
48 h, and the production of 11 hormones was measured in culture
media.71,72 Initially, 1,998 chemicals from ToxCast phases I, II,
and III were tested in a single dose.72 Subsequently, 656 chemi-
cals were tested in a six-point concentration–response (CR) for-
mat; most were selected because they changed levels of at least
3 hormones by 1.5-fold or more in the single-dose test.71,72
Two chemicals in CR testing were highly cytotoxic, and one
chemical had data quality flags, so these were excluded from
analyses,71 leaving 653 chemicals with CR data. Detailed meth-
ods for the H295R assay are available in Haggard et al.71 and
Karmaus et al.72

For our list of chemicals that increased E2 or P4 synthesis, we
excluded the hormones and hormone substrates E2, 17-a-estra-
diol, 17-a-ethinylestradiol, equilin, estriol, estrone, progesterone,
17-a-hydroxyprogesterone, 17-methyltestosterone, 4-androstene-
3,17-dione, 5-a-dihydrotestosterone, androsterone, dehydroepian-
drosterone, and testosterone propionate because hormones and
their substrates are measured in the assay, so treatment with such
chemicals may confound measurements of de novo steroid pro-
duction. Given that we excluded these chemicals, the results are
indicated as not applicable (NA) in Excel Tables S1 and S3–S5,
and they are not included as part of the analyses summarized in
Tables 1 and 2. After filtering out hormones and substrates, there
were 1,984 chemicals tested in single-dose and 639 tested in CR
assays.

Hits for the single-dose assay were determined from positive hit
calls listed in Karmaus et al. 2016 supplementary Table 4 for estra-
diol_up and prog_up (hitc = 1).72 Chemicals run multiple times in
single dose were assigned hit calls based on whether they tested posi-
tive or negative more often (e.g., clorophene increased E2 synthesis
one out of six times and is therefore indicated as negative). Chemicals
that induced E2 or P4 production in the CR assay71 were classified by
efficacy and potency into borderline-, low-, medium-, and high-effect
categories, as described in Cardona and Rudel.52 Briefly, Cardona
and Rudel classified E2-up and P4-up chemicals as positive if they
a) increased synthesis by ≥1:5-fold over controls at any concentra-
tion, b) significantly increased synthesis at a concentration ≤33 lM,
and c) had an adjusted maximal mean Mahalanobis distance >0.
These chemicals were then ranked by these criteria, and the top 25%
were assigned a “high” effect score, the middle 50% “medium,” and
the bottom 25% “lower.”52 Note that borderline chemicals were those
with a positive hit call in the initial analysis71 but that did not increase
synthesis by≥1:5-fold or only significantly increased synthesis at the
highest concentration tested; some of these may be false positives,
and the activities of some chemicals with high-dose effects may have
been underestimated.52 The remaining chemicals screened in this
study did not meet the authors’ criteria for a positive hit call for E2 or
P4,71 so these are indicated as nonsignificant (ns) in our tables.

We summarized H295R test results by merging the lists of E2
and P4 steroidogens from single-dose and CR testing. Because
CR testing is more robust and less prone to false positives or false
negatives than the single-dose assay, chemicals that increased E2
or P4 synthesis in single-dose but not in CR testing were classified
as negative. Chemicals that increased E2 or P4 in single-dose test-
ing and that were not tested in CR assays, or that were borderline-
active in CR testing, are indicated in summary tables with an
asterisk because the strength of evidence for these chemicals to
increase steroidogenesis is lower.
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ER Agonists
We identified ER-active chemicals from the supplemental data file
S2 published by Judson et al.73 In that study, 45 reference chemicals
were tested in 18 in vitro ToxCast assays that measure ER-
regulated pathways, including receptor binding and cellular prolifer-
ation, and those data were normalized to 17-a-ethinylestradiol and
integrated to produce area-under-the-curve (AUC) scores for ER
agonism and antagonism.73 This testing and modeling approach
was applied to a library of 1,812 chemicals with CR data from the
18 ToxCast assays for ER activity, and the authors used a threshold
of AUC ≥0:1 to define chemicals with clear agonist/antagonist ac-
tivity. Here, we classified chemicals with an AUC ≥0:7 as having
high activity, 0:7> AUC ≥0:4 as medium activity, and 0:4>
AUC ≥0:1 as low activity (Excel Tables S1 and S3–S5). Because
Judson et al. indicated that an AUC <0:1 could reflect interferences
in assay results,73 we applied a second threshold of 0:1> AUC
≥0:01 for borderline ER agonism or antagonism. Some chemicals
were borderline agonistic and antagonistic, so we designated these
as having mixed borderline activity. We considered chemicals with
agonist and antagonist AUCs <0:01 to be inactive.

Genotoxic Chemicals
We ascertained chemical genotoxicity from results compiled in six
databases from international and US agencies. From the NTP
Bioassay Genetox Conclusion Dataset,74 we extracted data from
Ames mutagenicity, in vivo and in vitromicronucleus, and in vivo
comet assays. From the European Union Reference Laboratory for
Alternatives to Animal Testing (EURL ECVAM) Genotoxicity
and Carcinogenicity Consolidated Databases of Ames positive and
negative chemicals,75,76 we collected results ofmutagenicity (bacte-
rial and mammalian), micronucleus (in vitro and in vivo), chromo-
somal aberration (in vitro and in vivo), and in vivo unscheduled
DNA synthesis assays. From the OECD eChemPortal,77 we col-
lected data from in vitro and in vivo mutation, transformation,
micronucleus, chromosomal aberration, unscheduled DNA synthe-
sis, sister chromatid exchange, comet, and DNA adduct assays classi-
fied as reliable with or without restrictions. From the National Library
of Medicine (NLM) Genetic Toxicology Data Bank (GENE-TOX),78
we compiled data from in vitro and in vivo micronucleus, chromo-
somal aberration,mutation,mitotic recombination, unscheduledDNA
synthesis, and sister chromatid exchange assays. From CCRIS,65 we
compiled in vitro genotoxicity data, including mutation (bacterial and
mammalian), unscheduled DNA synthesis, micronucleus, and chro-
mosomal aberration assays. In total, these databases included 17,894
chemicals with genotoxicity data. We classified chemicals as geno-
toxic if they had at least one positive result in any assay, nongenotoxic
if all valid assays were negative, and inconclusive if no tests returned
interpretable results (Excel Tables S1 andS3–S5).

KCs of Mammary Developmental Toxicants
We compared our list of BC-relevant chemicals (MCs, E2/P4 ster-
oidogens, and ER agonists; Excel Table S1) to those of the 30
mammary gland developmental toxicants identified by Rudel
et al.,44 compiling data for steroidogenesis, ER agonism, and geno-
toxicity of the developmental toxicants with the same methods as
above (Excel Table S4). This 2011 review emerged from the 2009
Mammary Gland Evaluation and Risk Assessment Workshop in
Oakland, California, a convening of >65 scientists, public health
advocates, and risk assessors, including experts in breast biology.
The authors compiled the list of 30 mammary gland developmental
toxicants through an “extensive PubMed literature review and ex-
amination of the citations,” although they acknowledge that “a few
relevant studies may be missing,”44 and the list does not include
studies published after 2011.

KCs of MCs: Calculating Enrichment and Predictivity
To determine whether MCs are more likely to have E2/P4 ster-
oidogenic, ER-agonistic, or genotoxic effects than other chemi-
cals—i.e., enrichment—we compared the fraction of MCs that
tested positive for these activities against a) the fraction of all
chemicals that tested positive in those assays and b) the frac-
tion of putative non-MCs that tested positive using Fisher exact
test [fisher.test() in the R Stats package]. We also calculated
the ability of these mechanistic activities to predict if a chemi-
cal was an MC. To do this, we compared the results from ster-
oidogenesis, ER agonism, and genotoxicity assays for MCs vs.
putative non-MCs using standard calculations of specificity,
sensitivity, and balanced accuracy:

Sensitivity %ð Þ= TP
TP+FN

×100,

Specificity %ð Þ= TN
TN +FP

×100,

Balanced Accuracy %ð Þ= Sensitivity+ Specificity
2

× 100,

where TP (true positive) represents MCs that test positive for the
effect; FN represents MCs that test negative for the effect; TN
represents non-MCs that test negative for the effect; and FP rep-
resents non-MCs that test positive for the effect. Finally, we calcu-
lated trends for increasing strength of endocrine activities among
MCs and putative non-MCs with two-sided Cochran–Armitage test
[CochranArmitageTest() in theRDescTools package].

Results
We applied and evaluated a KC approach to identify likely breast
carcinogens, focusing on receptor-mediated effects (KC 836), spe-
cifically estrogenic and progestogenic signaling, given that these
hormones are particularly relevant to breast carcinogenesis.48–51
We defined BC-relevant chemicals as those that have been shown
to induce mammary tumors in rodents (i.e., mammary carcino-
gens; MCs) and those that activated estrogenic or progestogenic
signaling in either of two in vitro screens. For these BC-relevant
chemicals, we also gathered data on genotoxicity (KC 236), given
that this is another important pathway to BC.5 We assessed
whether the KCs of estrogenic and progestogenic action and gen-
otoxicity could predict the adverse outcome of mammary tumors
by comparing the enrichment of these activities among MCs vs.
chemicals that did not induce mammary tumors in a cancer
bioassay.

BC-Relevant Chemicals
Overall, we identified 921 BC-relevant exposures, including
278 chemicals and ionizing radiation that induced mammary
tumors in rodents, as well as 642 additional chemicals that had
E2/P4 steroidogenic52,71,72 (515 chemicals) or ER agonistic73
(267 chemicals) activity in vitro (Figure 1 and Excel Table S1).
Four hundred twenty-one BC-relevant chemicals were geno-
toxic,65,74–78 and 485 exposures had more than one BC-relevant
effect.

MCs. The updated search expanded our previous list of 216
MCs9 to 279 exposures that induced mammary tumors in vivo
based on studies that we gathered from the IARC, NTP, US EPA,
and other authoritative databases (Figure 1 and Excel Table S1;
chemicals that induce mammary tumors denoted as “MC” in the
“MammaryTumorEvidence” column, and citations for mammary
tumor induction listed in the “MammaryTumorRefs” column).
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Notable additions to the list included several halogenated solvents,
drinkingwater disinfection byproducts, benzidine-based dyes, and
>30 pesticide ingredients. For 28 chemicals we classified as MCs
(including 11 new additions to the original MC list), one or more
references described mammary tumor induction as equivocal or
dismissed it, although 22 of these had at least one other reference
indicating that the mammary tumors were treatment-related (Excel
Tables S1 and S2). Half of these chemicals are active pesticide
ingredients for which the US EPA OPP was the entity that dis-
missed or questioned the tumors, including for the widely used
malathion, atrazine, and triclopyr. The rationales for the US EPA
dismissing or questioning carcinogenicity were mostly related to
the following: inconsistent decisions about considering fibroade-
nomas as tumors, reductions in body weight at high doses that
reduced mammary tumors and confounded dose–response trends,
dismissal of nonmonotonic dose responses, assertion of a lack of
mechanistic relevance to humans, and flawed study design, interpre-
tation, and statistical comparisons (described in more detail in the
“Discussion” section; in the SupplementalMaterial in “Supplemental
discussion on dismissed or equivocal rodent mammary carcinogens”;
and inExcel Table S2).

We updated several entries from our previous list. Specifically,
we removed N-nitrosodibutylamine and wood dust methanol
extract because subsequent reviews from the 15th RoC56 and
IARC,79 respectively, concluded that mammary tumors were not
induced by these chemicals. We removed magnetic radiation
because, although it promoted the development of chemically initi-
ated mammary tumors, tumor induction by magnetic radiation
alone was not shown.80 We generalized the listings of other radia-
tion sources (e.g., X-rays, neutrons, tritium) to “ionizing radia-
tion.”81 Finally, we replaced the entries in our 2007 report for
“bracken fern extracts” and “conjugated estrogens” with the specific
chemicals that induced mammary tumors (respectively, ptaquiloside

and p-ecdysone; and estradiol valerate, estradiol dipropionate, and
estrone benzoate).

Endocrine disruptors. The KC “receptor-mediated effects” is
highly relevant for chemicals associated with BC, especially for
receptors involved in E2 and P4 signaling.48–51 Using US EPA
HT in vitro testing data, we identified chemicals that activate the
ER or increase E2 or P4 synthesis (Figure 1) and classified them
as BC-relevant based on strong evidence that these hormonal
activities increase BC risk.52,82–84 Our complete BC-relevant
chemicals list combines the rodent MCs with the ER agonists and
E2/P4 steroidogens identified through US EPA in vitro screening
(Figure 1).

We identified ER agonists using data published by Judson
et al.,73 who computationally integrated results from 18 in vitro
ToxCast assays that measure ER-regulated pathways to predict
whether a chemical is an ER agonist or antagonist. Their integra-
tion of ToxCast CR data yielded AUC values for each chemicals’
relative magnitudes of agonist and antagonist activities at the ER,
normalized to 17-a-ethinylestradiol (AUCagonist-ethinylestradiol = 1).
Of the 1,812 chemicals with CR data from these 18 assays, they
classified 92 (5%) as ER agonists (AUCagonist ≥ 0:1),73 which we
further stratified as 10 with high (AUCagonist ≥ 0:7), 13 with medium
(0:7> AUCagonist ≥ 0:4), and 69 with low (0:4> AUCagonist ≥ 0:1)
agonistic activity. Judson et al. set a cutoff of AUC ≥0:1 for
“clear” agonist/antagonist activity, but several of their weak-
agonist reference chemicals fell below this cutoff.73 We therefore
created an additional category of borderline-active chemicals with
0:1>AUC ≥0:01, classifying 175 (10%) chemicals as borderline
agonists or as having mixed borderline activity (both 0:1>
AUCagonist ≥ 0:01 and 0:1> AUCantagonist ≥ 0:01) (Excel Table
S1; Judson et al. values shown in the AUC.Agonist and AUC.
Antagonist columns, and our classifications in the ERactivity col-
umn). Of the 75 chemicals we classified as rodent MCs that were

Table 1. E2/P4 steroidogenesis, ER agonism, and genotoxicity of chemicals tested in the assays and enrichment of these activities among MCs.

Effect
Chemicals
tested (n)

Chemicals
positive
[n (%)]

MCs
tested

(n)54–63,65

MCs
positive
[n (%)]

MCs not
tested
(n) p-Valuea

E2 up (single dose)72 1,972 290 (15) 72 18 (25) 201 0.027*

P4 up (single dose)72 1,496 197 (13) 65 16 (25) 208 0.015*

E2 or P4 up (single dose)72 1,982 422 (21) 72 24 (33) 201 0.020*

E2 and P4 up (single dose)72 1,486 65 (4) 65 10 (15) 208 8:1× 10−4*

E2 up (CR)71 639 266 (42) 39 23 (59) 234 0.044*

P4 up (CR)71 275 (43) 22 (56) 0.13
E2 or P4 up (CR)71 404 (63) 28 (72) 0.31
E2 and P4 up (CR)71 137 (21) 17 (44) 0.0027*

E2 up (total)b 2,003 346 (17) 73 23 (32) 200 0.0044*

P4 up (total)b 307 (15) 23 (32) 8:3× 10−4*

E2 or P4 up (total)b 515 (26) 29 (40) 0.0098*

E2 and P4 up (total)b 138 (7) 17 (23) 1:3× 10−5*

ER agonist73 1,812 92 (5) 75 11 (15) 203 0.0019*

ER borderline agonist73 149 (8) 8 (11) 0.40
ER mixed borderline73 26 (1) 3 (4) 0.11
ER agonistic (any)73 267 (15) 22 (29) 0.0015*

ER antagonist73 18 (1) 0 (0) 1
ER borderline antagonist73 79 (4) 2 (3) 0.77
ER antagonist (any)73 123 (7) 5 (7) 1
Endocrine disrupting (any) 2,279 684 (30) 82 42 (51) 196 8:3× 10−5*

EDC+ 369 (16) 31 (38) 3:6× 10−6*

Genotoxic65,74–78 17,894 7,582 (42) 227 209 (92) 51 2:2× 10−16*

Endocrine disrupting and
genotoxic

1,456 246 (17) 76 35 (46) 202 1:1× 10−8*

EDC+ and genotoxic 140 (10) 27 (36) 3:8× 10−9*

Note: MCs are chemicals that induce mammary tumors in rodents; E2/P4 (total) integrates single dose72 and CR71; ER agonistic (any) represents the sum of agonist, borderline agonist,
and mixed borderline; ER antagonistic (any) represents the sum of antagonist, borderline antagonist, and mixed borderline; EDCs involve the integration of steroidogenesis and ER
agonism. CR, concentration–response (format); E2, estradiol; EDC, endocrine-disrupting compound; ER, estrogen receptor; MC, mammary carcinogen; P4, progesterone. *Statistically
significant (p<0:05).
aFisher exact test comparing proportion of MCs positive vs. proportion of all chemicals positive.
bChemicals tested in single dose only counted as positive if they were not tested or also positive in CR.
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included in ER activity modeling by Judson et al.,73 11 (15%) met
the criteria for ER agonists, and another 11 met our criteria for
borderline agonists (including mixed borderline), for a total of 22
(29%) ER-agonistic MCs (Table 1). No MCs met the criteria for
being ER antagonists (AUCantagonist ≥ 0:1), which is consistent
with the hypothesis that ER activation in the breast increases BC
risk, as well as with the clinical use of ER antagonists to suppress
breast carcinogenesis (e.g., tamoxifen, raloxifene85–87). We clas-
sified two MCs as borderline antagonists (3-iodo-2-propynyl-
N-butylcarbamate and C.I. Acid Red 114) and three MCs as
having mixed borderline ER activity (1,4-benzenediamine, 17-
[(1-oxohexyl)oxy)pregn-4-ene-3,20-dione [hydroxyprogester-
one caproate], and 4,4 0-methylenebis(o-toluidine)].

We further identified 515 chemicals that stimulated E2 or
P4 biosynthesis in the H295R in vitro assay (excluding hor-
mones and substrates, see the “Methods” section and also Excel
Table S1, columns E2up_onedose through HormoneSummary,
for results).52,71,72 In the single high-dose assay, 422/1,982
chemicals (21%) induced E2 or P4 synthesis, with 290/1,972
(15%) increasing E2, 197/1,496 (13%) increasing P4, and 65/
1,486 (4%) increasing both (Table 1 and Excel Table S1,
E2up_onedose and P4up_onedose columns for Karmaus et al.
hit calls).72 Of the MCs that were tested at a single dose, 18/72
(25%) increased E2 and 16/65 (25%) increased P4; 24/72 (33%)
increased E2 or P4, and 10/65 (15%) increased both. Of the 639
chemicals we considered from the H295R assay performed in
CR (excluding hormones and substrates), 266 (42%) increased
synthesis of E2, 275 (43%) increased P4, 404 (63%) increased
either, and 137 (21%) increased both (Table 1 and Excel Table
S1, E2up_CR and P4up_CR columns for Cardona and Rudel hit
calls).52,71 Of the 39 MCs included in the CR study, 23 (59%)

increased E2, 22 (56%) increased P4, 28 (72%) increased either,
and 17 (44%) increased both (Table 1).

We summarized results of E2 and P4 induction in H295R by
combining results from both single-dose and CR assays
(HormoneSummary column in Excel Tables S1 and S3–S5).
Given that the CR assay format is more robust and less prone to
false positives, we classified chemicals that increased E2 or P4
synthesis only in the single-dose format but not in CR as nega-
tive, and we excluded these from our list of BC-relevant chemi-
cals unless they were also an MC or ER agonist based on the
criteria described in the “Methods” section, “Chemicals that Induce
Mammary Tumors in Rodents” and “Estrogen Receptor Agonists,”
respectively. Chemicals that were tested only in a single dose and
increased E2 or P4 synthesis and chemicals with borderline activity
in CR are marked with an asterisk in the HormoneSummary column
of Excel Tables S1 and S3–S5 to indicate weaker evidence of
effects. In total, 2,003 chemicals were tested for steroidogenic-
ity,52,71,72 and after applying the criteria above, we considered
515 (26%) to increase E2 or P4, including 296 categorized as
active and 219 categorized as borderline active (see the
“Methods” section, “Chemicals that Increase Estradiol and
Progesterone Steroidogenesis”). Seventy-three of the chemicals
tested for steroidogenesis were in our list of rodent MCs, of
which we considered 23 (32%) to increase E2, 23 (32%) to
increase P4, 29 (40%) to increase either, and 17 (23%) to
increase both (Table 1).

In Excel Tables S1 and S3–S5, we have indicated the evidence
for endocrine-disrupting activity in the EDC column: ER agonists
(AUC≥0:1) and chemicals that increased E2 or P4 steroidogenesis
with low, medium, or high activity in CR are designated EDC+,
reflecting the higher confidence for endocrine-related effects of

Table 2. E2/P4 steroidogenesis, ER agonism, and genotoxicity of chemicals tested for carcinogenicity, enrichment of these activities among MCs, and
predictivity.

Effect

Non-MCs
tested

(n)60,62,67

Non-
MCs

positive
[n (%)]

MCs
tested

(n)54–63,65
MCs positive

[n (%)] p-Valuea
Sensitivity

(%)
Specificity

(%)

Balanced
accuracy

(%)

E2 up (single dose)72 437 73 (17) 72 18 (25) 0.098 25 83 54
P4 up (single dose)72 409 60 (15) 65 16 (25) 0.067 25 85 55
E2 or P4 up (single dose)72 447 113 (25) 72 24 (33) 0.15 33 75 54
E2 and P4 up (single dose)72 399 20 (5) 65 10 (15) 0.0044* 15 95 55
E2 up (CR)71 202 83 (41) 39 23 (59) 0.052 59 59 59
P4 up (CR)71 88 (44) 22 (56) 0.16 56 56 56
E2 or P4 up (CR)71 126 (62) 28 (72) 0.28 72 38 55
E2 and P4 up (CR)71 45 (22) 17 (44) 0.0086* 44 78 61
E2 up (total)b 451 97 (21) 73 23 (32) 0.071 32 78 55
P4 up (total)b 95 (21) 23 (32) 0.051 32 79 55
E2 or P4 up (total)b 146 (32) 29 (40) 0.23 40 68 54
E2 and P4 up (total)b 46 (10) 17 (23) 0.0031* 23 90 57
ER agonist73 460 17 (4) 75 11 (15) 6:0× 10−4* 15 96 55
ER borderline agonist73 39 (8) 8 (11) 0.51 11 92 51
ER mixed borderline73 4 (1) 3 (4) 0.061 4 99 52
ER agonistic (any)73 60 (13) 22 (29) 8:0× 10−4* 29 87 58
ER antagonist73 3 (1) 0 (0) 1 0 99 50
ER borderline antagonist73 12 (3) 2 (3) 1 3 97 50
ER antagonist (any)73 19 (4) 5 (7) 0.36 7 96 51
Endocrine disrupting (any) 485 183 (38) 82 42 (51) 0.028* 51 62 57
EDC+ 114 (24) 31 (38) 0.0089* 38 76 57
Genotoxic65,74–78 657 492 (75) 227 209 (92) 4:4× 10−9* 92 25 59
Endocrine disrupting and

genotoxic
349 96 (28) 76 35 (46) 0.0024* 46 72 59

EDC+ and genotoxic 56 (16) 27 (36) 3:4× 10−4* 36 84 60

Note: MCs are chemicals that induce mammary tumors in rodents; non-MCs are chemicals that were tested in a rodent cancer bioassay and were not reported to induce mammary
tumors; E2/P4 (total) integrates single dose72 and CR71; ER agonistic (any) represents the sum of agonist, borderline agonist, and mixed borderline; ER antagonistic (any) represents
the sum of antagonist, borderline antagonist, and mixed borderline; EDCs involve the integration of steroidogenesis and ER agonism. CR, concentration–response (format); E2, estra-
diol; ER, estrogen receptor; MC, mammary carcinogen; P4, progesterone. *Statistically significant (p<0:05).
aFisher exact test comparing proportion of MCs positive vs. proportion of putative non-MCs positive.
bChemicals tested in single dose only counted as positive if they were not tested or also positive in CR.
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these chemicals; chemicals that increased only E2/P4 steroidogen-
esis in the single dose, were borderline-steroidogenic in CR, or
weakly activated the ER (0:1> AUCagonist ≥ 0:01, with or without
borderline antagonism) are designated EDC∼ , indicating lower
confidence; and chemicals that were not E2/P4 steroidogens or ER
agonists are designated EDC–. It is important to note that, although
ER antagonists are by definition endocrine disruptors, for this anal-
ysis we are defining EDCs to refer only to chemicals with evidence
for increasing estrogenic or progestogenic signaling through ster-
oidogenesis or ER agonism. Notably, 10 chemicals that were nega-
tive for steroidogenesis or ER agonism were not tested in the other
assay, andwewere only able to assess two types of BC-relevant en-
docrine activity with reliable HT screens (in the “Discussion” sec-
tion in “In vitro and mechanistic data”). Thus, some EDC-
chemicals may in fact be EDCs. We also indicated P4 as EDC+
because, although we excluded it from our H295R analyses and
it was a borderline ER agonist,73 it is a key hormone of interest
and exposure to P4 would activate a BC-relevant pathway.51
Throughout the paper, the term EDC refers to EDC+ and
EDC∼ chemicals unless otherwise specified.

For more a nuanced consideration of the strength (potency
plus efficacy) of endocrine-disrupting effects, we also created a
category for the top EDC score for each chemical tested in
H295R-CR52,71,72 or in the ER pathway model,73 given that these
assays provided a measure of effect size. In Excel Tables S1 and
S3–S5, this column is populated with the classifier of the strong-
est endocrine effect for each chemical, so, for example, a chemi-
cal that was high E2-up, low P4-up, and borderline ER agonistic
received a “high” top EDC score. Chemicals that were inactive in
these assays received a top EDC score of “none.” With this
approach, 94 chemicals we classified as BC-relevant (16 of them
MCs) met our criteria for having high activity in E2/P4 produc-
tion in the H295R CR format or ER agonism in the ER activity
model, 158 (12) as medium, 116 (2) as low, 221 (11) as border-
line, 111 (36) with no significant activity, and 222 (203) that
were not tested in these screens.

Significantly, because we could not identify a reliable screen
for PR activity (see the “Discussion” section in “In vitro andmech-
anistic data”), the strength of some PR agonists’ endocrine activ-
ities is underestimated. For example, we excluded P4 from our
H295R-CR analysis, so its top EDC score is “borderline” based on
ER agonism. Other PR agonist MCs whose strength of endocrine
activitymay be underestimated include 17-a-hydroxyprogesterone
(top EDC score of low), norethindrone (medium), and lynestrenol
(none).

Genotoxicity of BC-Relevant Chemicals
Having identified 921 BC-relevant MCs and EDCs, we classified
those agents according to evidence for the KC of genotoxicity.
Because genotoxicants can induce cancer-initiatingmutations,36,40
it was unsurprising that 209 (92%) of the 227 chemical MCs
tested65,74–78 had reported genotoxic activity (Table 1). Ionizing
radiation was not included in databases of chemical testing, but its
genotoxicity is well established;81,88–92 given that radiation is not a
chemical, it is not included in Table 1 but it is indicated as geno-
toxic in the list of BC-relevant exposures (Excel Table S1).

EDCs are more likely to increase BC risk if they also have
the KC of genotoxicity because these activities can both initiate
and promote carcinogenesis.36,40 Of the 417 E2/P4 steroido-
genic and ER-agonistic BC-relevant chemicals tested for geno-
toxicity,65,74–78 246 showed a positive result in at least one
assay (Excel Table S1). Limiting to only higher-confidence
EDCs, there were 140 genotoxic EDC+ chemicals, including 27
MCs (Excel Table S3). These MCs with endocrine-disrupting
and genotoxic properties include several widely used pesticides

(malathion, parathion, atrazine, simazine, and ametryn), en-
dogenous and synthetic hormones (E2, estriol, estrone, 17-
a-ethinylestradiol, P4, diethylstilbestrol, and mestranol), and
dye components (C.I. Azoic diazo component 112 [benzidine],
3,3 0-dimethylbenzidine and its dihydrochloride, C.I. Disperse
Black 6 and its dihydrochloride, o-aminoazotoluene, 1,4-benzi-
nediamine, and 5-nitro-o-anisidine). Furthermore, 3,3 0-dime-
thylbenzidine and its dihydrochloride salt, C.I. Azoic diazo
component 112, o-aminoazotoluene, isoeugenol, 1,4-benzene-
diamine, and diethylstilbestrol were considered genotoxic
MCs with both steroidogenic and ER-activating properties (Excel
Tables S1 and S3).

Mammary Gland Developmental Toxicants
Prenatal and early life exposure to EDCs can alter mammary gland
development in humans and animals in ways that raise BC
risk.44,93–102 We therefore compared the endocrine-disrupting and
genotoxic properties of the 30 chemicals we identified as rodent
mammary gland development disruptors in 201144 (Excel Table
S4). We classified 15 of these as BC-relevant (MC, E2/P4-
steroidogenic, or ER agonistic), 3 as EDC-, and 13 were not
included in US EPA’s in vitro steroidogenesis52,71,72 or ER activ-
ity73 screens. Fourteen BC-relevantmammary developmental toxi-
cants were E2/P4 steroidogenic or ER agonistic: the top EDC score
was “high” for 4 of these chemicals, “medium” for 3, “low” for 4,
and “borderline” for 3. In the H295R screen for steroidogenesis, 3
mammary developmental toxicants were shown to increase E2
synthesis, 3 increased P4, 1 increased both, and 9 were not active.
Ten developmental toxicants were classified as ER agonists, 3 had
borderline agonistic activities, and 2 (tamoxifen and fulvestrant)
were medium-strength ER antagonists. Because these ER antago-
nists are used to both treat BC and prevent recurrence,85,86,103 it is
not surprising that they alter mammary gland development, and
these observations reinforce the importance of ER agonism as a
KC for breast carcinogens. Finally, 16 of the developmental toxi-
cants showed evidence of genotoxicity,65,74–78 12 of which also
had BC-relevant steroidogenic52,71,72 or ER agonistic73 activ-
ity. Of the 30 mammary developmental toxicants, 6 were in our
list of MCs, and many of the others [benzyl butyl phthalate,
dichlorodiphenyltrichloroethane (DDT), zearalenone, perfluor-
ooctanoic acid (PFOA), 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), and polybrominated diphenyl ethers] have been found
to affect the breast in humans.44,82,83

Putative Non-Mammary Carcinogens
Because a goal of this study was to determine whether E2/P4 ster-
oidogenesis, ER agonism, and genotoxicity are indicators of
whether a chemical is likely to increase BC risk, we identified puta-
tive non-MCs to compare the KC activities among chemicals that
do and do not induce mammary tumors in rodents. We found 850
chemicals with bioassays listed in ICE,67 ToxValDB,62 and
ToxRefDB60 that we classified as putative non-MCs because they
were not on theMC list (i.e., mammary tumors were not induced in
the bioassay) (Excel Table S5). Of the 451 putative non-MCs with
H295R data,52,71,72 97 increased E2, 95 increased P4, 146
increased either, and 46 increased both; of the 460 included in ER
activity modeling,73 17 were agonists and 43 were borderline ago-
nists; and of the 657 included in genotoxicity databases,65,74–78

492 showed at least one positive result (Table 2 and Excel Table
S5). Ninety-six putative non-MCs met our criteria for being geno-
toxic EDCs (see the “Methods” section). Note that based on our
reviews of mammary tumors in cancer bioassays, as described in in
the “Discussion” section in “Two-year cancer bioassay” and in
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Cardona and Rudel58 and Kay et al.,83 we expect that some of these
putative non-MCsmay in fact be rodentMCs.

Enrichment of MCs for KCs
To test our hypothesis that endocrine disruption and genotoxicity
are important KCs of breast carcinogens, we calculated the preva-
lence of endocrine-disrupting and genotoxic activities among
MCs compared with all chemicals tested, that is, enrichment, by
the Fisher exact test (Table 1). With few exceptions, MCs were
significantly enriched for increasing steroidogenesis, activating
the ER, inducing genotoxicity, and having combinations of those
effects. Of the 76 MCs tested for genotoxicity and endocrine ac-
tivity (ER agonism or E2 or P4 steroidogenesis), 35 (46%) were
positive for both, compared with 246 (17%) of the 1,456 chemi-
cals tested that had data for both characteristics (Table 1). More
than half of the MCs tested for steroidogenesis or ER agonism
were active (42 EDCs of 82 MCs tested), and most of those
endocrine-disrupting MCs were also genotoxic (35 genotoxic
EDCs of 76 MCs tested). MCs were more than twice as likely to
be higher-confidence endocrine disruptors (EDC+) compared
with the group of all chemicals tested: 38% (31/82) of MCs were
EDC+ compared with 16% (369/2,279) of all chemicals tested
(2.3-fold higher, p=3:6× 10−6), and 36% (27/76) of MCs were
genotoxic EDC+ compared with 10% (140/1,456) of all chemi-
cals tested (3.7-fold higher, p=1:5× 10−8).

Interestingly, among endocrine-related effects, p-values for
enrichment among MCs were lowest for increasing synthesis of
both E2 and P4 rather than just one (6 E2-only, 6 P4-only, 17
E2+P4, of 73 MCs tested). This corresponds to >3-fold enrich-
ment for MCs that increased both hormones (17/73 vs. 138/2,003
of all chemicals tested). It is also notable that greater proportions
of MCs were found to be steroidogenic than ER-active, even
though the historical emphasis has been on detecting activity at
the ER to characterize chemicals’ endocrine-disrupting and BC-
promoting potential. These data suggest that steroidogenesis—
rather than ER activation—may be a more prevalent mechanism
by which chemicals stimulate mammary tumorigenesis.

We also compared the enrichment of genotoxic and endocrine
activities among MCs vs. putative non-MCs (Table 2). The frac-
tions of putative non-MCs active in endocrine-related assays
were similar to those of the full set of chemicals tested in those
assays, so results were similar whether MCs were compared
against all chemicals tested (Table 1) or against putative non-
MCs (Table 2), although statistical comparisons were stronger
for the larger sample size of all chemicals tested. A greater pro-
portion of non-MCs displayed genotoxicity65,74–78 compared
with all chemicals tested, so enrichment of MCs for genotoxicity
(with or without endocrine activity) was less pronounced for
comparisons against non-MCs, although it was still significant.
Ultimately, MCs were significantly enriched for all three BC-
relevant mechanistic effects whether compared with all chemicals
tested (Table 1) or putative non-MCs (Table 2), bolstering confi-
dence in these findings.

We refined our analysis of how activity in EDC assays
relates to likelihood of inducing mammary tumors by compar-
ing enrichment of top EDC scores (see the “Results” section,
“Endocrine Disruptors”) among MCs and putative non-MCs.
First considering only endocrine effects, we found that MCs
were 2.6 times more likely to have top EDC scores categorized
as “high” (p=0:0015) and 1.4 times less likely to have no top
EDC score (p=0:0033) compared with non-MCs (Table 3 and
Figure 2). There was a statistically significant trend for stron-
ger endocrine activities among MCs compared with putative
non-MCs (p=2:1× 10−4).

We also wanted to understand whether a chemical’s likelihood
of inducing mammary tumors could be predicted from a combined
assessment of its genotoxicity and the strength of its endocrine ac-
tivity.MCswere approximately three timesmore likely to be geno-
toxic and have “high” (p=0:0032) or “medium” (p=0:0084) top
EDC scores compared with putative non-MCs, and again the trend
for higher EDC scores among MCs vs. non-MCs was significant
(p=0:0012) (Table 4 and Figure 3). Therewere only five nongeno-
toxic MCs with EDC data, so power was limited for evaluating
enrichment in this set. Nevertheless, we found that MCs were 14
times less likely to both be nongenotoxic and lack a top EDC score
(p=2:6× 10−5) compared with non-MCs, and the trend for
increasing EDC strength was still significant when comparing non-
genotoxic MCs vs. non-MCs (p=0:0024). Thus, although MCs
had the lowest p-values for enrichment of genotoxicity overall
(Tables 1 and 2), the combination of genotoxicity and endocrine
potency was more informative than genotoxicity or endocrine ac-
tivity alone (Tables 3 and 4). If the potential for a chemical to
induce mammary tumors depended on genotoxicity and not endo-
crine effects, then the proportion of MCs vs. non-MCs that were
genotoxic would be similar among all magnitudes of endocrine ac-
tivity; instead, genotoxicants with stronger endocrine activity were
more likely to be MCs, whereas genotoxicants without significant
activity inH295R-CR52,71 or the integrated ERmodel73 had a simi-
lar likelihood of inducingmammary tumors or not (Table 4).

Table 3. Enrichment of MCs for strength of endocrine activity compared
with putative non-MCs.

Top EDC
score

Non-MCs
[n (%)]60,62,67

MCs
[n (%)]54–63,65

Fold-
difference p-Value

High 38 (8.1) 16 (21) 2.6 0.0015*a

Medium 46 (9.8) 12 (16) 1.6 0.16a

Low 30 (6.4) 2 (2.6) 0.41 0.29a

Borderline 52 (11) 11 (14) 1.3 0.44a

None 306 (65) 36 (47) 0.72 0.0033*a

Total 472 77 — —
Trend 2:1× 10−4*b

Note: —, not applicable; EDC, endocrine-disrupting compound; MC, mammary carcin-
ogen. *Statistically significant (p<0:05).
aFisher exact test comparing MCs vs. non-MCs.
bTwo-sided Cochran–Armitage trend test for strength of endocrine activity among MCs
vs. non-MCs.

Figure 2. Proportions of top EDC scores among MCs and putative non-MCs
(values in Table 3). Top EDC scores for each chemical are assigned based
on the strongest effect in E2 or P4 steroidogenesis (H295R CR format71) or
ER agonism,73 with the criteria of high: top 25% of E2- or P4-inducers by
Cardona and Rudel 2021 ranking52 or ER Agonism AUC ≥0:7; medium:
middle 50% of E2- or P4-inducers or 0:7> ER AUC ≥0:4; low: bottom
25% of E2- or P4-inducers or 0:4> ER AUC ≥0:1; borderline: statistically
significant E2 or P4 induction not reaching Cardona and Rudel 2021 criteria
or 0:1> ER AUC ≥0:01; and none: no statistically significant induction of
E2 or P4 or ER AUC <0:01. Note: AUC, area under the curve; CR, concen-
tration–response (format); E2, estradiol; EDC, endocrine-disrupting com-
pound; ER, estrogen receptor; MC, mammary carcinogen; P4, progesterone.
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Predicting BC Hazard Based on KCs
Although induction of mammary tumors in rodents is an imperfect
predictor of human breast carcinogenicity,39 we used rodent mam-
mary tumor induction as a proxy for potential human breast carci-
nogenesis because they are similarly influenced by genotoxicity
and hormonal signaling.8 We therefore calculated how well steroi-
dogenesis, ER activity, and genotoxicity could predict a chemical’s
likelihood of being anMC. This information could direct the appli-
cation of these assays to screen potential breast carcinogens. We
compared the results from KC assays for MCs vs. putative non-
MCs using standard calculations of sensitivity (ability to detect
true positives), specificity (detecting true negatives), and balanced
accuracy (integration of sensitivity and specificity).

Endocrine-related assays generally showed high specificity
but low sensitivity (Table 2). The overall high specificity reflects
the fact that putative non-MCs were unlikely to have endocrine
activity. For example, only 4% (17/460) of non-MCs were ER
agonists and only 10% (46/451) increased both E2 and P4, corre-
sponding to specificities of 96% and 90%, respectively. Despite
enrichment of MCs for endocrine activities, many MCs were not
active in these assays, leading to low sensitivity. This is consist-
ent with the expectation that there are many biological pathways

to BC aside from ER agonism and E2/P4 steroidogenesis, includ-
ing genotoxicity,5 other types of endocrine signaling,16,51,104 and
multiple other KCs.16,105,106 On the other hand, genotoxicity was
highly sensitive for detecting MCs but poorly specific given that
many non-MCs were also genotoxic.

Combining sensitivity and specificity, the balanced accuracy of
any combination of endocrine or genotoxicity data fell between 50%
and 61% (Table 2). The greatest balanced accuracy was achieved for
chemicals increasing both E2 and P4 in the H295R CR assay (61%)
and for genotoxic EDC+ chemicals (60%).

Discussion
This updated list of 921 BC-relevant exposures is, to our knowl-
edge, the first to use a KC approach that combines 279 rodent
MCs with 642 additional chemicals that have mechanistic evi-
dence for biological activities likely to increase BC risk. Based
on extensive evidence that estrogenic and progestogenic path-
ways promote breast carcinogenesis,5,16,44,52 (reflecting KC 8,
receptor-mediated effects36) we included chemicals that activate
the ER or increase synthesis of E2 or P4 as BC-relevant along
with the rodent MCs. Lack of high quality screening data for
other BC-relevant mechanisms, such as PR activation, limited

Table 4. Enrichment of MCs for strength of endocrine activity and genotoxicity compared with putative non-MCs.

Top EDC score Genotoxicity Non-MCs [n (%)]60,62,67 MCs (n)54–63,65 Fold-difference p-Value

High + 21 (6.3) 13 (18) 2.93 0.0032a

Medium + 18 (5.4) 11 (15) 2.89 0.0084a

Low + 17 (5.1) 2 (2.8) 0.56 0.55a

Borderline + 30 (8.9) 8 (11) 1.26 0.51a

None + 158 (47) 32 (45) 0.96 0.79a

Trendb + 0.0012*b

High − 3 (0.9) 2 (2.8) 3.15 0.21a

Medium − 10 (3.0) 1 (1.4) 0.47 0.7a

Low − 4 (1.2) 0 (0) 0.00 1a

Borderline − 10 (3.0) 1 (1.4) 0.47 0.7a

None − 65 (19) 1 (1.4) 0.070 2:6× 10−5

Trendb 0.0024*b

Total 336 71 NA NA

Note: EDC, endocrine-disrupting compound; MC, mammary carcinogen. *Statistically significant (p<0:05).
aFisher exact test comparing MCs vs. non-MCs.
bTwo-sided Cochran–Armitage trend test for strength of endocrine activity among MCs vs. non-MCs.

Figure 3.Mosaic plots of top EDC scores and genotoxicity among MCs and putative non-MCs (values in Table 4). Top EDC scores for each chemical are
assigned based on the strongest effect in E2 or P4 steroidogenesis (H295R CR format71) or ER agonism,73 with the criteria of high: top 25% of E2- or P4-
inducers by Cardona and Rudel 2021 ranking52 or ER Agonism AUC ≥0:7; medium: middle 50% of E2- or P4-inducers or 0:7> ER AUC ≥0:4; low: bottom
25% of E2- or P4-inducers or 0:4> ER AUC ≥0:1; borderline: statistically significant E2 or P4 induction not reaching Cardona and Rudel 2021 criteria or
0:1> ER AUC ≥0:01; and none: no statistically significant induction of E2 or P4 or ER AUC <0:01. Charts portray scores in order from “high” at the bottom
to “none” at the top. Note: AUC, area under the curve; CR, concentration–response (format); E2, estradiol; EDC, endocrine-disrupting compound; ER, estrogen
receptor; MC, mammary carcinogen; P4, progesterone.
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our ability to include them. We also compiled genotoxicity data
for these BC-relevant chemicals as further evidence suggesting
the potential to increase BC risk, given that genotoxicity is a
prevalent KC (KC 236) of many carcinogens. Based on their ac-
tivity in these KCs, the chemicals on our list—particularly the
most potent ones—are more likely than most to increase BC risk,
and we recommend prioritizing them for additional research and
precautionary regulation.

KCs of MCs
As chemical testing paradigms shift toward more mechanistic
approaches, this new application of the KCs of carcinogens pro-
vides insights into the etiology of BC and strategies for carcino-
gen identification. Our goals in compiling data on chemical
genotoxicity and endocrine activity were 3-fold: a) to highlight
two KCs of known MCs, b) to demonstrate that these KCs are
enriched among MCs, and c) to identify other chemicals that ex-
hibit these KCs and may therefore be MCs as well.

Genotoxicity is a KC of most known carcinogens,7,79,81,107–110
and it has historically been the first consideration in predicting car-
cinogenic potential. Because genotoxicants can initiate and promote
carcinogenesis,36,40 it is not surprising that 92% of the 227 MCs
included in the databases we used were genotoxic.

The KC “receptor-mediated effects” is also highly salient for
BC, particularly for effects mediated through the ER and PR.More
than 70% of BC cases are hormone responsive,111–114 and numer-
ous experimental and epidemiological studies have linked E2 and
P4 disruption to BC, with increased hormonal activity correlating
with increased risk of BC,7,111,113,115,116 and inhibited E2 signaling
correlatingwith reduced BC risk and severity.7,117

Notably, many MCs on our list demonstrated both genotox-
icity and the ability to stimulate estrogenic or progestogenic sig-
naling; of 76 MCs tested, 35 (46%) showed both effects, a
significant enrichment compared with all chemicals tested
(17%, 246/1,456; Table 1) and compared with putative non-
MCs (28%, 96/349; Table 2). This combination of genotoxic
and endocrine activity may explain why certain chemicals, such
as the commonly used experimental carcinogen 7,12-dimethyl-
benz(a)anthracene (DMBA, a potent E2 steroidogen and geno-
toxicant), predominantly induce mammary tumors.118 Of the
642 BC-relevant EDCs not previously identified as MCs, 211
(33%) were also genotoxic, but 115 of these genotoxic EDCs did
not have cancer studies recorded in ICE,67 ToxValDB,62
or ToxRefDB.60 We consider these genotoxic EDCs, which
include several widely used pesticides and dye components, to
be strong candidates for regulation based on their mechanistic
activities and also priorities for in vivo or epidemiological
investigation as possible breast carcinogens, especially the
strongest EDCs.

When we evaluated the ability for H295R, ER activity, and
genotoxicity assays to predict mammary carcinogenicity, we found
that positive results in these assays were significantly enriched
among MCs compared with non-MCs (Table 2). Furthermore, we
found that MCs were significantly enriched for having high EDC
scores compared with non-MCs, and they were significantly less
likely to test negative for endocrine and genotoxic effects (Tables
3 and 4). These trends were confirmed with positive associations
between MCs and strength of endocrine activity, regardless of
genotoxicity. We found a high degree of specificity for most
endocrine-related effects (i.e., most putative non-MCs tested nega-
tive, Table 2), reinforcing the importance of endocrine pathways
in BC and indicating that activity in these selected assays can be
used to flag chemicals as likely BC hazards. However, the low
sensitivity of endocrine activity (i.e., many MCs tested negative)
reinforces the notion that these assays miss other mechanisms of

breast carcinogenesis. Genotoxicity, on the other hand, was a
highly sensitive but weakly specific predictor of MCs, given that
both MCs and putative non-MCs were likely to be genotoxic.
Because balanced accuracy requires good sensitivity and speci-
ficity, better predictions require new knowledge about BC mech-
anisms and assays to test them (e.g., PR activity). In addition, a
more quantitative characterization of assay results [e.g., half-
maximal activities (AC50s), genotoxic effect sizes] and integra-
tion of toxicokinetics/toxicodynamics could also improve their
predictive power.

One limitation of our KC predictivity analysis is that,
although we found MCs to be significantly enriched for endo-
crine and genotoxic activities, these measures depend on the set
of chemicals tested. For example, although zero MCs were antag-
onists in the ER model, the proportion was not statistically signif-
icantly different from all chemicals tested or from putative non-
MCs, perhaps because only 18 of the 1,812 chemicals tested
were antagonists, limiting statistical power. In addition, most
chemicals selected for H295R screening in CR were tested
because they significantly altered multiple hormone levels in the
single-dose screen. Thus, the enrichment of E2/P4 steroidogene-
sis for MCs in H295R CR was statistically weak (Tables 1 and 2)
because the chemicals tested in CR had already been shown to
affect steroidogenesis. The most meaningful comparison for
H295R data was in the combination of single-dose and CR test-
ing, given that these numbers reflected the full set of chemicals
assessed for steroidogenesis, and we placed more weight on
results from the more robust CR assay format (see the “Methods”
section). Relatively few MCs were included in H295R and ER
activity screens, so enrichment calculations would have been
more statistically robust with a larger number of chemicals to
compare. Fewer than 30% of chemical MCs were tested in these
screens (82/278 chemical MCs tested in either H295R or the inte-
grated ER model). In fact, 45 MCs had no data on genotoxicity
or endocrine disruption from any of the sources we considered
(Excel Table S1). Finally, some putative non-MCs may be false
negatives (discussed below and by Kay et al.83), so enrichment
calculations may be over- or underestimates.

Overall, the consistent and significant enrichment of MCs for
genotoxicity and multiple measures of endocrine activity across
two comparison groups (vs. all chemicals tested and vs. putative
non-MCs) demonstrates the robustness of our findings. The sig-
nificant enrichment (Tables 1 and 2) and trend for increasing
strength of endocrine activity among MCs (Tables 3 and 4) sup-
ports the utility of H295R and ER activity assays to predict a
chemical’s likelihood of increasing BC risk. More extensive
chemical screening for endocrine activity would strengthen statis-
tical comparisons. Given the enrichment of MCs for endocrine
and genotoxic effects, and the well-established association
between BC risk and exposure to hormonally active and geno-
toxic agents,5,82 many of the EDCs identified here can be plausi-
bly anticipated to increase BC risk, particularly if they are also
genotoxic or have strong activity in endocrine assays. Validation
of the in vitro endocrine effects considered here with in vivo or
human studies could test this hypothesis and clarify risks associ-
ated with these compounds.

Carcinogenesis and KCs Assays: Strengths and Limitations
Although the biological effects we used as a basis for creating
this list of chemicals that may increase BC risk (mammary carci-
nogenicity, E2/P4 steroidogenesis, ER activity, and genotoxicity)
are useful for this purpose, we also want to highlight limitations
with the methods used to measure these activities and identify
opportunities to strengthen them. These limitations are important
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considerations both for interpretation of our results and for future
application of the KCs approach to hazard identification.

Two-year cancer bioassay. The 2-y rodent bioassay has been
heavily relied upon for carcinogenicity testing because it effec-
tively predicts human cancer risk,37,56 especially for genotoxic
chemicals that induce cancer-initiating mutations.36,40 The major
strength of the cancer bioassay is that it is a controlled long-term
laboratory study of chemical exposures in vivo, isolating the spe-
cific effects of a chemical in an animal that is similar to humans
in metabolism and toxicokinetics/toxicodynamics.37 In vivo stud-
ies like the cancer bioassay are essential to validate in vitro and
in silico chemical testing methods.

However, several aspects of the 2-y bioassay design constrain
its ability to identify breast carcinogens, particularly EDCs.119,120

First, unlike genotoxicants, which are considered tumor-initiating,37

many EDCs appear to influence carcinogenesis through tumor pro-
motion or developmental alterations that sensitize tissues to hormo-
nal stimuli.43,121–123 The interplay between genotoxic, hormonal,
and developmental processes reduces the ability of the standard can-
cer bioassay to identify MCs and complicates the interpretation of
mammary tumors.83

Second, testing chemicals in isolation misses effects of coex-
posures, especially for tumor promoters—such as EDCs—that
may require initiating events to induce cancer. This gap is impor-
tant because people are continually exposed to mixtures of geno-
toxicants and EDCs. Additive effects of multiple environmentally
relevant levels of EDCs can produce adverse outcomes that sin-
gle exposures do not, and low numbers of initiated mutant cells
can be promoted to tumorigenesis through endocrine disrup-
tion.124–130 If bioassays tested combined exposures, it is likely
more EDCs (including some putative non-MCs) would produce
mammary tumors in test conditions.

Furthermore, in the 2-y bioassay, animals begin chronic expo-
sure to test chemicals after they are weaned,68–70,131 but it is well
known that BC risk is influenced by exposure during a range of win-
dows of susceptibility (WoS), including prenatal, perinatal, pubertal,
parous, and menopausal periods.82,132–136 Because some of these
WoS occur before dosing begins in the assay,120 a lack of mammary
tumors in the bioassay does not demonstrate that the chemical would
not produce tumors following early life exposure.137

Beyond the timing of exposures and collections in the cancer
bioassay, methods for mammary tissue collection and evaluation
also limit the ability to detect cancerous lesions.83 First, US EPA
and OECD guidelines require microscopic assessment of tissues
from only the control and high-dose animals; evaluation of tissue
from lower dose groups is only required when lesions are detected
macroscopically or if effects are observed at the high dose.68,70,83

This approach impedes identification of carcinogens that induce
tumors at lower doses, as can occur in nonmonotonic dose
responses or when high-dose toxicity masks the effects of lower
doses (discussed below). In addition, histopathological assess-
ments of the mammary gland in US EPA, NTP, and OECD bioas-
says are typically performed on transverse cross-sections, cut
perpendicular to the skin, rather than longitudinal sections, cut par-
allel to the skin.68–70,83 Transverse sections yield very little mam-
mary tissue, making it unlikely that these samples would contain
microscopic lesions.83,138 Microscopic assessment of longitudinal
sections and whole-mount mammary glands would vastly improve
the assay’s ability to detect neoplastic lesions arising from chemi-
cal exposures, particularly if all dose groupswere assessed.83

Another issue with the 2-y cancer bioassay is that because it
is cost-, labor-, and time-intensive, many potential carcinogens
have not been tested. Identifying agents that exhibit KCs of carci-
nogens, such as genotoxicity and endocrine disruption, can help
prioritize chemicals for bioassay testing and guide precautionary

action. We identified 115 genotoxic EDCs that did not have a
bioassay recorded by NTP, ToxValDB, or ToxRefDB (Excel
Table S1), and we consider these priority candidates for testing in
a cancer bioassay that uses relevant WoS and appropriate techni-
ques as described above.

Another source of uncertainty in our list of MCs is inconsis-
tent reporting of mammary tumor findings by study authors,
sponsors and regulatory agencies.9,52,58 We reviewed US EPA
OPP carcinogenicity studies for 24 pesticides and NTP technical
reports for 14 additional chemicals we had previously flagged for
inconsistency or uncertainty in conclusions about mammary
tumors,9,58 identifying 28 chemicals that we classified as MCs
and noting that our conclusions differed from some study authors
or regulators. Most cases where mammary tumors were dis-
missed or questioned came from the US EPA OPP. Below, we
describe five recurring themes that led to dismissal of mammary
tumors. All 28 cases of MCs with dismissed or equivocal evi-
dence for mammary tumors are summarized in Excel Table S2
and described in greater detail in the Supplemental Material in
“Supplemental discussion on dismissed or equivocal rodent
mammary carcinogens.” A careful review of bioassays conducted
on BC-relevant chemicals, keeping in mind the issues discussed
in this section, could identify some MCs that have previously
been inappropriately designated as non-MCs.

Theme 1: fibroadenomas. Although fibroadenomas (FBAs)
occur as benign lesions in rats, they are clinically significant in
humans and can be legitimately interpreted as tumors.139–142 FBA
growth in humans is likely hormonally mediated, signaling expo-
sure to endocrine-active compounds, and some studies suggest
they can progress to malignancy or increase the risk of developing
other breast tumors.139–146 Furthermore, human FBAs can be con-
fused with carcinomas or cancer metastases; distinguishing them
can necessitate invasive diagnostic methods, such as biopsy; and
large FBAs may require surgery.143,144 Opinions differ whether
FBAs in rodents can progress to malignancy and whether they pre-
dict malignant tumorigenesis in humans8,147; however, hormonal
stimuli and well-established MCs, including DMBA, induce and
increase both FBAs andmalignant tumors in rodents.148–152 For all
these reasons, we consider FBAs as significant abnormal sequelae
of chemical exposures that reflect changes relevant to human breast
carcinogenesis. In the Supplemental Material in “Supplemental
discussion on dismissed or equivocal rodent mammary carcino-
gens,”we describe examples where significant FBA induction was
dismissed, or where FBA incidence was combined with mammary
adenomas and carcinomas during analysis to eliminate the statisti-
cal significance of the latter tumor types.

Theme 2: nonmonotonic dose responses. Many toxicologi-
cal assessments assume that chemicals exert their strongest effects
at higher doses and are weaker at lower doses.131,153 However,
numerous studies have shown EDCs eliciting nonmonotonic dose
responses, including in the mammary gland,10,21,33,153–156 because
hormones (and therefore disruptions in hormonal signaling) pro-
duce different effects at different concentrations. For example, the
US EPA dismissed the significant induction of mammary tumors
from the pesticides malathion157 and alachlor158 in the middle-
and low-dose groups, respectively, because tumor incidence in
the high-dose group was not statistically significantly different
from controls (Excel Table S2 and Supplemental Material in
“Supplemental discussion on dismissed or equivocal rodent
mammary carcinogens”).

Theme 3: high-dose toxicity. High doses of chemicals in the
bioassay can render food unpalatable or cause systemic toxicity,
either of which can reduce the animal’s body weight. Because
lower body weight reduces mammary tumor incidence,9,159,160 it
can mask what would be a treatment-related increase in tumors.
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In some studies, mammary tumor induction in high-dose groups
becomes significant if results are adjusted for body weight,160 but
this adjustment is inconsistently applied.161–165 We found several
examples where statistically significant increases in mammary
tumors at lower doses were dismissed owing to the lack of further
increases at higher doses (nonmonotonic dose–response), and
many of these were accompanied by body weight reductions
(Excel Table S2 and Supplemental Material in “Supplemental
discussion on dismissed or equivocal rodent mammary carcino-
gens”). We expect that standardized approaches for maintaining
assay sensitivity in the presence of altered body weight would
improve 2-y bioassay accuracy and consistency.

Theme 4: mechanistic relevance to humans. When a patho-
genicmechanism in a test animal is not present in humans, findings
from the assay may not apply to human cancer risk. However, we
found that for chlorotriazine herbicides (including atrazine, sima-
zine, and propazine), the proposed mechanism for induction of
mammary tumors in rodents was dismissed as not relevant to
humans without adequate evidence. These herbicides consistently
induced mammary tumors in female Sprague–Dawley rats,166–168

and study sponsors and the US EPA OPP have proposed that the
tumors result from an attenuated luteinizing hormone surge, caus-
ing persistent high levels of circulating E2 that stimulate mammary
cell proliferation.167,169,170 We question the assertion that this
mechanism is not relevant in humans166,169,170 owing to multiple
evidentiary gaps and logical flaws in their conclusions (Supplemental
Material in “Supplemental discussion on dismissed or equivocal
rodent mammary carcinogens”). These include a lack of measure-
ments of E2 levels andmammary cell proliferation, dismissal of gen-
otoxicity, and conflation of rat strains with different sensitivities.
Indeed, atrazine has been shown to activate aromatase and increase
E2 synthesis in human71,171–174 and rat174 cells, providing a plausible
mechanism for atrazine to promote mammary tumorigenesis in both
species.

Theme 5: study design and comparator selection. Reviewers
of cancer bioassays sometimes compare tumor rates in treated
animals against those in concurrently dosed controls, and in some
cases also compare with historical controls pooled from years
of bioassays on the same strains of rodents.69,131 The former
approach is the default and higher-confidence approach, although
historical controls can be useful for rare tumors.69,131 Caution
should be used when comparing with historical controls because
rodent strains can undergo genetic drift, shifting the rate of spon-
taneous tumors over time, and differences in housing conditions
and feed can affect spontaneous tumor development.175,176

Several MCs in our list showed significant increases in mammary
tumors compared with matched or in-house controls but were at
the high end of the historical control range; others showed mar-
ginal increases compared with matched controls but exceeded the
historical control range (Excel Table S2 and Supplemental
Material in “Supplemental discussion on dismissed or equivocal
rodent mammary carcinogens”). In addition, statistical tests are
affected by the number of animals compared, so significance may
be weakened by comparing too few matched controls or a large
number of historical controls that have been affected by changes
in genetics, housing, or food. These are important considerations
in assessing tumor induction, particularly when assessments are
subject to other pitfalls as described above (e.g., FBA, low body
weight) or if reviewers do not present their rationale for dismiss-
ing tumors.

Extent and quality of databases for rodent mammary
tumors. A challenge for identifying chemicals that do and do not
induce tumors at any site is that systematic, comprehensive, well-
maintained databases of cancer bioassays (and other experimental
studies) are not readily available. In the present study, we used

nine databases to identify MCs and three of those databases to
identify putative non-MCs (see the “Methods” section). Two data-
bases that we relied on to identify MCs (CCRIS65 and Carcinogenic
Potency Database64/LCDB63) are no longer maintained by the US
government. We identified 93 MCs from these databases that were
not included in any of the other sources (Excel Table S1). CCRIS
has been discontinued, and the Carcinogenic Potency Database64

has been adopted by a private company, Lhasa Limited. In addition,
ToxValDB62 and ToxRefDB60 each include partially overlapping,
incomplete subsets of bioassays conducted on pesticides. Some pes-
ticides missing from ToxValDB and ToxRefDB include the food
crop pesticides napropamide, acifluorfen, kinetin, and pyridate,60,62

and the only way to access these and other pesticide carcinogenicity
studies is through Freedom of Information Act requests, which are
time consuming and inefficient, taking months or even years to
receive documents in our experience. Furthermore, hundreds of
chemicals tested in NTP bioassays were missing from ToxRefDB
(314 chemicals) and ToxValDB (456 chemicals), and 629 chemi-
cals were listed in either ToxRefDB or ToxValDB but not the other
(Excel Table S5). Based on these inconsistencies, we anticipate that
our list of 850 putative non-MCs is likely incomplete. Other sources
we used to identify MCs (e.g., IARC,54 15th ROC56) were not use-
ful for identifying putative non-MCs because they are released
infrequently and summarize data from many types of studies,
including those where the mammary gland was not assessed. These
limitations complicate attempts (such as this study) to identify
mechanistic, structural, and other features that could be used to pre-
dict chemical carcinogenicity, delaying a shift away from time-
consuming and expensive rodent studies.

In vitro and mechanistic data. Because many MCs were gen-
otoxic, endocrine-active, or both (Excel Table S1), in vitro testing
for these KCs can provide an HT approach to predict carcinoge-
nicity and prioritize chemicals for in vivo testing, reducing reli-
ance on animal models.42 We relied on in vitro screens for ER
activity and E2 and P4 steroidogenesis and on databases catalog-
ing thousands of in vitro and in vivo genotoxicity assays.
Although in vitro testing can efficiently identify potential haz-
ards, as we have done here, there are limitations.

E2 and P4 steroidogenesis in H295R. There are several limi-
tations with using the H295R steroidogenesis assay to identify
chemicals that increase E2 or P4 levels in the breast. A biological
limitation is that the assay measures steroid synthesis in an adre-
nocortical carcinoma cell line that expresses the full comple-
ment of metabolic enzymes involved in E2 and P4 synthesis
from cholesterol.177 Although these may predict systemic hor-
mone changes, many cell types (including in the mammary
gland,178–181 ovary,182,183 adipose tissue,178,179 and skin178)
are important sources of E2 and P4 production, affecting local
hormone levels in tissues. In particular, estrogen levels in the
breast are modulated by local aromatization of androgens into
estrogens by preadipocytes.180,181 As a result, hormone pro-
duction in adrenocortical cells may not reflect the levels of
hormones that would be produced in breast tissue. Comparison
of H295R results with studies of hormone levels and tissue
responses in the rat mammary gland would help in understand-
ing the relevance to BC in humans.

A technical limitation of the H295R assay is that it is rela-
tively insensitive to detecting E2 steroidogenesis, potentially
leading to false negative results. Indeed, we previously noted that
fold-increase of P4 synthesis tended to be more robust than that
of E2 in this assay.52 One possible explanation is that prestimula-
tion with forskolin, which strongly increases E2 production, may
reduce the assay’s ability to measure induction of E2 by subse-
quent exposure to test chemicals.71 In addition, we used Cardona
and Rudel’s classifications of effect size in H295R-CR, which
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categorized chemicals that only increased hormone levels at the
highest dose as borderline active, regardless of fold-change at
that dose.52 These high-dose effects, observed for 33 borderline
E2 steroidogens and 26 borderline P4 steroidogens (see Cardona
and Rudel supplemental Tables S1 and S2), may be relevant and
important for human risk.

ER activation. A major strength of the ER activity data we
used is that results from 18 independent in vitro assays were inte-
grated with a computational network model,73 minimizing poten-
tial false positives or false negatives from any individual assay.
Notably, Judson et al. classified chemicals with an AUCagonist
score ≥0:1 as ER agonists,73 and we have listed chemicals with
AUCagonist scores between 0.01 and 0.1 as borderline agonists as
well, so some of these could be false positives.

Other considerations for identifying endocrine disruptors.
The majority (196 of 278, Table 1) of chemical MCs had not
been tested in the endocrine assays we relied on despite the fact
that the US EPA has tested 2,012 chemicals in the H295R71,72

and 1,812 in the ER pathway models. In all, only 71 MCs had
been tested in both H295R and integrated ER activation analyses,
and only 373 of the 920 BC-relevant chemicals had data for ster-
oidogenesis, ER agonism, and genotoxicity. Although some of
the MCs not tested may be incompatible with HT in vitro analy-
ses owing to issues with chemical stability, volatility, or solubil-
ity, it is surprising that so many chemicals that induce rodent
mammary tumors were not included in H295R or ER activity
testing. The importance of expanding testing for endocrine effects
is underscored by a study applying a set of chemical structure-
based ER activity models to over 32,000 chemicals, where 4,001
chemicals were classified as “high priority actives” and 6,742 as
“potential actives.”184 Application of the integrated in vitro test-
ing and modeling approach developed by Judson et al.73 to these
predicted ER agonists would help identify additional ER-active
chemicals beyond the 267 listed here. Similarly, we developed a
quantitative structure-activity relationship (QSAR) model to pre-
dict chemicals that likely increase E2 or P4 steroidogenesis,185

and in vitro testing of these chemicals could highlight additional
chemicals that likely increase BC risk. Finally, in addition to
chemicals not being tested for steroidogenic and ER activities,
there are other endocrine pathways relevant to breast carcinogen-
esis (e.g., PR activation, prolactin signaling) that do not have reli-
able HT assays, so we were not able to include chemicals with
these BC-relevant effects in this list.

It is also important to note that we assigned top EDC scores
based on the ranking of chemicals included in the H295R-CR
and ER activity screens, and these two assays are not directly
comparable. For example, agonist AUCs calculated in Judson
et al.73 are normalized to 17-a-ethinylestradiol activity at the ER,
whereas E2 and P4 steroidogens were classified by ranking po-
tency and efficacy among chemicals with positive hit calls.52

Sources of variability differ among the H295R assay, the 18 ER
activity assays, and the computational integration of ER activity,
so top EDC scores are a semi-quantitative approach to categorize
two different types of effect sizes. In addition, incomplete endo-
crine activity screening for many chemicals can lead to underesti-
mating EDC activity (e.g., P4 activity at the PR, steroidogens not
tested for steroidogenesis), affecting statistical comparisons of
top EDC scores among MCs vs. non-MCs.

Genotoxicity. We classified any chemical with a positive
result in any relevant assay as genotoxic so as to capture many
different types of genotoxicity. This approach does not distinguish
potent genotoxicants from chemicals that are only active at very
high concentrations. Although we recognize that a higher propor-
tion of positive results provides greater confidence for a chemi-
cal’s genotoxicity, different assays measure different aspects of

genotoxicity, so a single positive result in a valid assay can reflect
true genotoxicity and should not be negated by negative results
in another assay. In addition, some chemicals may have been
tested in formats that were not suitable to measure their genotox-
icity (e.g., with or without metabolic activation, or at insufficient
or excessive concentrations). It is also possible that chemicals
we classified as nongenotoxic here were not tested in assays sen-
sitive to their mode of genotoxicity. As a result, we may have
included some false or misleading positives and negatives in our
genotoxicity results.

A potential limitation of genotoxicity databases for predicting
DNA damage in the breast is that activation of the ER can cause
DNA damage in ER-responsive regions,186–188 and observations
of rearrangements in ER-responsive loci in breast tumors support
that this is a clinically relevant process.188 A recent study showed
that the ER agonist propylparaben induces DNA damage in ER-
expressing cells and rodent mammary glands, but not in ER-
negative cells.186 However, none of the databases used here clas-
sified propylparaben as genotoxic.65,74–78 Given that typical
genotoxicity testing is not performed in hormone-responsive
cells,189,190 the genotoxic effects of ER agonists may be missed.
Of the references we used, only LCDB contained any record of
cancer studies for parabens (butyl and isobutyl), which were
negative under the conditions of the assay.63 However, because
exposure to parabens can elicit at least four Hallmarks of
Cancer in mammary cells at environmentally relevant doses,191

parabens are strong candidates for testing in a cancer bioassay
that includes WoS.

Although many effective genotoxicity assays have been
developed and performed on thousands of chemicals, chemical
induction of genomic instability (a closely related KC) has pro-
ven more difficult to measure. Genomic instability refers to the
continual and progressive cycle of DNA damage and mutagene-
sis (considered an “enabling characteristic” in the Hallmarks of
Cancer40), and because prevailing theories suggest that cells
require multiple mutations to become cancerous,192–194 chemi-
cals that induce genomic instability could be particularly relevant
to carcinogenesis. Unfortunately, genomic instability is challeng-
ing to assess in HT because it requires multiple measurements
over time. Developing methods to screen chemicals for their abil-
ity to induce genomic instability could address this gap.

Other considerations for in vitro and mechanistic data. A
major limitation of in vitro assays is that most cannot replicate
the complex biological processes that impact chemical toxicity.
For instance, metabolism can render some compounds biologi-
cally active while other compounds are metabolized to nontoxic
forms, and these processes also affect levels of chemicals and
their metabolites in tissues.195 Furthermore, most in vitro models
contain only one cell type grown on plastic, whereas tissues con-
tain many cell types that interact with each other and with sur-
rounding stroma, so effects seen in vitro may be quite different
from the actual effects of a chemical on tissue. Integration of toxi-
cokinetics and toxicodynamics into in vitro assays and computa-
tional models will improve the ability for chemical screening to
better reflect these complex mechanisms.

Finally, just as this list likely misses BC-relevant compounds
that work by pathways that lack assays, the list also captures
some compounds that are unlikely to increase BC risk in humans.
In some cases, additional mechanistic information about chemi-
cals on this list reveals activities that counteract their BC-relevant
effects: for example, mifepristone increased P4 in H295R, but its
key mechanism as a PR antagonist196,197 likely mitigates the con-
sequences of increased P4. Similarly, although aspirin increased
E2 synthesis in the single-dose H295R assay, epidemiological
studies have shown that aspirin reduces BC risk (reviewed by
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Moysich et al.198) and improves survival,199 possibly by reducing
inflammation (another KC of carcinogens).

Implications of knowledge gaps for BC etiology. Although
our list considerably expands the set of chemicals previously identi-
fied asBC-relevant by includingERagonists andE2/P4 steroidogens,
it still likely misses many chemicals with BC-relevant activity
because many biological processes relevant to breast carcinogenesis
remain unknown. For example, the pesticideMC 3-iodo-2-propynyl-
N-butylcarbamate was not steroidogenic, ER agonistic, or genotoxic,
but further investigation could elucidate the pathways by which it
causes mammary tumors and, in so doing, reveal mechanisms of tox-
icity that should be incorporated into chemical screening. Some BC-
relevant chemicals that did not meet the criteria for inclusion in this
study can also be identified through epidemiological studies, such as
heavy metals and pentabromodiphenyl ethers,83 and these could also
be evaluated forKCs that increaseBC risk.

In addition, some processes known to influence breast carcino-
genesis do not have corresponding assays, lack publicly available
chemical testing data, or have relevant assays that have only been
performed on limited sets of chemicals. Mechanisms that we rec-
ommend prioritizing for assay development (especially in HT) and
adoption into chemical screening programs include integrated
models of activation of the PR, human epidermal growth factor re-
ceptor 2 (HER2), and epidermal growth factor receptor (EGFR)
(analogous to the ER activity model used here); alterations in hor-
mone metabolism; induction of inflammation; induction of
genomic instability; BC-related gene expression and epigenetic
signatures; and mechanisms of metastasis.5,16,51,105,200–202 Assays
for some of these mechanisms have been developed and are com-
patible with HT, such as the BCScreen105 and ER modulator203
gene expression panels, but they have not yet been adopted by
chemical screening programs. We considered but did not use US
EPA data from the PR_BLA screen for PR activity or from the
NovaScreen aromatase activation assay because we found that
results did not show reasonable signal-to-noise levels, reproduci-
bility, or consistency with expected findings based on previous
knowledge. Further development, validation, and application of
these assays, and others targeting the mechanisms above, would
significantly help integrate endocrine disruption and other under-
studied KCs into toxicology risk assessment.136,204

Mammary gland development is another BC-relevant endpoint
that is incompletely understood and rarely assessed in toxicological
studies. Interestingly, mammary developmental toxicants can increase
susceptibility to mammary tumors whether they accelerate or delay
gland development. For example, diethylstilbestrol, genistein, and
bisphenol A (BPA) are ER agonists that accelerate mammary gland
development,94,96,205,206 and each has been shown to induce mam-
mary tumors7,56,63,65,207,208 (although we did not list BPA as an MC
because our source databases did not include the relevant studies).
On the other hand, atrazine99,209 and TCDD96,100 delay mammary
gland development, and atrazine is an MC that increases E2 and P4,
and TCDD sensitizes the mammary gland to DMBA-induced
tumors,210 but it was not included in steroidogenesis or ER activity
screening (Excel Table S4). Given the significant overlap between
MCs, EDCs, and mammary development-disrupting chemicals, other
mammary development disruptors are also likely to be EDCs and
possibly MCs. Further investigation into the hormonal and tumori-
genic effects of mammary development disruptors could provide
insight into other mechanisms of BC development.

Translation and Implications
Our list of BC-relevant chemicals and their KCs can immediately
guide regulatory prioritization, product formulation, and con-
sumer disclosures, while also setting the stage for future research.
This approach is useful for flagging chemicals with activity

relevant to common human diseases, and we hope others will
employ it to similarly prioritize chemicals for preventive action
based on their biological activities and potential to affect human
health.

Our analysis highlights actions that can be taken by regulatory
and testing agencies, such as the US EPA and NTP, to identify
and reduce risks posed by potential breast carcinogens. We iden-
tified hundreds of MCs and other BC-relevant chemicals that lack
adequate data for genotoxicity and endocrine disruption, and
these could be prioritized for in vitro and in vivo toxicity testing.
Based on their mechanisms of concern, we argue that many of
the chemicals on this list should not be considered low hazard
without rigorous evaluation of their potential to adversely affect
the breast. Similarly, because of limitations that we have dis-
cussed above in mammary tumor assessments in rodent cancer
bioassays, we suggest prioritizing the genotoxic EDCs on our list
for testing in a cancer bioassay that is sensitive to mammary
effects and captures important WoS, unless such studies already
exist. We recommend that regulatory guidelines for in vivo carci-
nogenicity testing be updated to standardize approaches for mam-
mary gland analysis and interpretation,44,52,58,83,136,138,211 and
previous studies where mammary effects were discounted should
be reevaluated. We consider the 56 putative non-MCs that are
genotoxic EDC+ to be priority candidates for such a review.

Another priority is to develop additional in vitro and short-
term assays that extend our ability to capture relevant KCs for
breast carcinogens. As described above, many KCs of carcino-
gens lack efficient screening methods, impeding efforts to use
this framework to identify cancer risk factors.

In addition to filling data gaps in chemical screening, identify-
ing BC-relevant chemicals and their KCs can support a range of
future inquiries. For example, this study could be used to develop
QSAR models for flagging structural features common to chemi-
cals with different combinations of genotoxic, steroidogenic, and
ER-agonistic activities, such as the one we have recently pub-
lished for E2/P4 steroidogens,185 supporting chemical read-
across and predictive toxicology. Similarly, a study of genotoxic
EDCs that did not induce mammary tumors in a bioassay could
provide insights about chemical features that prevent the antici-
pated mammary tumors from developing.

The BC-relevant chemicals and mechanisms identified here can
also guide biomonitoring and epidemiological studies. Monitoring
exposures to these BC-relevant chemicals in humans, particu-
larly those with predicted high exposure, could identify high-
risk demographics, geographic regions, or important sources
of exposure. Prioritizing chemicals that people are exposed to
chronically can expedite preventive action. Epidemiological
studies can incorporate these exposures, considering the poten-
tial impact of coexposures and using quantitative potency and
efficacy data from in vitro assays to develop evidence-based
exposure metrics.124 Epidemiological studies that consider ex-
posure patterns of BC-relevant chemicals could also shed light
on why BC rates have surpassed lung cancer rates in the
United States2,3 and worldwide.1 We are preparing to publish
a companion manuscript that summarizes predicted exposure
sources and intake levels of these BC-relevant chemicals in
the United States, and this can provide additional direction for
biomonitoring, epidemiology, and risk reduction.

Conclusions
This list of 921 BC-relevant exposures, 279 of which induce
mammary tumors in vivo, provides an updated and more compre-
hensive understanding of chemical exposures that may increase
BC risk. By classifying chemicals according to their ability to
induce synthesis of E2 or P4, activate ER signaling, and create
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DNA damage and mutations, this list establishes a new basis for
chemical hazard assessment and risk reduction. We demonstrated
that MCs were significantly enriched for these mechanisms com-
pared with both putative non-MCs and with all chemicals tested,
especially for stronger endocrine effects. Integrating evidence for
these two KCs could help predict whether a chemical is likely to be
an MC and, by inference, increase BC risk. Interestingly, MCs were
more significantly enriched for increasing both E2 and P4 synthesis
than either hormone alone, and they were more likely to be steroido-
gens than ER agonists, indicating that steroidogenesis warrants
more emphasis in future studies of chemicals that increase BC risk.

This list can inform biomonitoring and epidemiological stud-
ies, strengthen testing of chemicals for carcinogenic properties,
support application of the KC approach for predicting carcino-
gens, and prioritize chemicals for revised risk assessments or test-
ing in a cancer bioassay with BC-relevant WoS. Based on their
activity in two BC-relevant KCs, we argue that many of these
chemicals should not be considered safer alternatives or low haz-
ard without additional investigation of their ability to impact the
breast. Future structural analyses of these chemicals can also pro-
vide a basis for read-across methods to identify other potential
BC-relevant chemicals or chemical classes. In addition, this study
models a process for identifying, and integrating into toxicologi-
cal testing, key biological processes common to chronic diseases.
Together, we provide a springboard for a wide range of actions
that could improve our understanding of BC etiology and our
ability to prevent the leading cause of cancer death among
women worldwide.
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